Serine acetyltransferase of Escherichia coli: substrate specificity and feedback control by cysteine.
نویسنده
چکیده
Although SAT (serine acetyltransferase) of Escherichia coli, which catalyses the first step in cysteine synthesis, proceeds via a random-order ternary complex reaction mechanism [Hindson and Shaw (2003) Biochemistry 42, 3113-3119], it has been suggested that the nearly identical enzyme from Salmonella typhimurium might involve an acetyl-enzyme intermediate [Leu and Cook (1994) Protein Peptide Lett. 1, 157-162]. In this study the alternative acetyl acceptor threonine and the alternative acyl donor, propionyl-CoA were used to further investigate the reaction mechanism of SAT from E. coli. Steady-state kinetic data and dead-end inhibition studies were again diagnostic of a random-order ternary complex reaction mechanism for alternative substrates. Since earlier kinetic studies with SAT from S. typhimurium suggested that cysteine competes with acetyl-CoA for binding, rather than serine with which it is isostructural, the specificity of the serine-binding pocket was assessed with three substrate mimics; beta-hydroxypropionic acid, glycine and ethanolamine. The data show that SAT interacts productively with the amino and hydroxymethyl moieties of serine, whereas the carboxyl group provides an essential contribution to binding strongly, supporting a view that cysteine will interact productively at the serine-binding site. Furthermore, since the hydroxymethyl contact region of the serine-binding site appears able to accommodate the methylene and acetyl moeties of threonine and O -acetyl-serine respectively, the site is unlikely to provide obligatory short-range contacts with the hydroxyl group of serine, a prerequisite for exclusion of cysteine. Such a proposal is supported by the results of micro-calorimetric studies which show that cysteine competes with serine for binding to SAT rather than with CoA. It follows that tight binding of cysteine at the serine-binding site near the catalytic centre may be the effector of a substantial reduction in the affinity of SAT for CoA, yielding the observed pattern of steady-state inhibition and the mechanism by which cysteine mediates effective end-product control of its synthesis.
منابع مشابه
Increase in the stability of serine acetyltransferase from Escherichia coli against cold inactivation and proteolysis by forming a bienzyme complex.
Cysteine synthetase from Escherichia coli is a bienzyme complex composed of serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase-A (OASS). The effects of the complex formation on the stability of SAT against cold inactivation and proteolysis were investigated. SAT was reversibly inactivated on cooling to 0 degrees C. Ultracentrifugal analysis showed that SAT (a hexamer) was dissociat...
متن کاملOverproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase.
Organisms that overproduced L-cysteine and L-cystine from glucose were constructed by using Escherichia coli K-12 strains. cysE genes coding for altered serine acetyltransferase, which was genetically desensitized to feedback inhibition by L-cysteine, were constructed by replacing the methionine residue at position 256 of the serine acetyltransferase protein with 19 other amino acid residues or...
متن کاملAcyl derivatives of homoserine as substrates for homocysteine synthesis in Neurospora crassa, yeast, and Escherichia coli.
“Activated” forms of L-homoserine have been shown to be more readily utilized as substrates than homoserine for the homocysteine synthetases (enzymes which catalyze the formation of homocysteine from homoserine and sulfide in the presence of pyridoxal phosphate) of Neurospora crassu, yeast, and Escherichia coli KB. This substrate preference is shown by the increased specific activities of the e...
متن کاملDifferential Regulation of Serine Acetyltransferase Is Involved in Nickel Hyperaccumulation in Thlaspi goesingense*
When growing in its native habitat, Thlaspi goesingense can hyperaccumulate 1.2% of its shoot dry weight as nickel. We reported previously that both constitutively elevated activity of serine acetyltransferase (SAT) and concentration of glutathione (GSH) are involved in the ability of T. goesingense to tolerate nickel. A feature of SAT is its feedback inhibition by L-cysteine. To understand the...
متن کاملCysteine biosynthesis in Lactobacillus casei: identification and characterization of a serine acetyltransferase
In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT (cysE) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 375 Pt 3 شماره
صفحات -
تاریخ انتشار 2003